Establishment, Identification, Quantification of Methanogenic Archaea in Chicken Ceca and Methanogenesis Inhibition in in Vitr

نویسندگان

  • Steven C. Ricke
  • Jimmy T. Keeton
  • Rhonda K. Miller
چکیده

Establishment, Identification, Quantification of Methanogenic Archaea in Chicken Ceca and Methanogenesis Inhibition in in vitro Chicken Ceca by Using Nitrocompounds. (May 2006) Suwat Saengkerdsub, B.S., Chulalongkorn University; M.S., Chulalongkorn University Co-Chairs of Advisory Committee: Dr. Steven C. Ricke Dr. Jimmy T. Keeton In the first phase of this study, the diversity of methanogenic bacteria in avian ceca was found to be minimal. Based on 16S rDNA clone libraries, a common phylotype, designated CH101, ranged between 92.86 to 100 % of the total clones whereas less than 1% of the other phylotypes were found. On the basis of the sequence identity, all of the sequences, except sequence CH1270, are related from 98.97 to 99.45% to 16S rDNA Methanobrevibacter woesei GS. Sequence CH1270 is 97.62% homologous to the sequence identified to uncultured archaeon clone ConP1-11F. Clearly, the predominant methanogen found to reside in the chicken ceca was M. woesei. By using a MPN enumeration method, methanogen counts were found to be in the range of 6.38 to 8.23 log10 organisms per gram wet weight. The 16S rDNA copy number per gram wet weight in the samples was between log10 5.50 and 7.19. The second phase of the study was conducted to observe the effects of selected nitrocompounds and two different feedstuffs on in vitro methane production in chicken

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of the Methanogenic Archaea in Tropical Estuarine Sediments

Methanogenesis may represent a key process in the terminal phases of anaerobic organic matter mineralization in sediments of coastal lagoons. The aim of the present work was to study the temporal and spatial dynamics of methanogenic archaea in sediments of tropical coastal lagoons and their relationship with environmental changes in order to determine how these influence methanogenic community....

متن کامل

Methyl Fluoride Affects Methanogenesis Rather than Community Composition of Methanogenic Archaea in a Rice Field Soil

The metabolic pathways of methane formation vary with environmental conditions, but whether this can also be linked to changes in the active archaeal community structure remains uncertain. Here, we show that the suppression of aceticlastic methanogenesis by methyl fluoride (CH(3)F) caused surprisingly little differences in community composition of active methanogenic archaea from a rice field s...

متن کامل

Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea

Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocyste...

متن کامل

Inhhibitory effects of saturated fatty acids on methane production by methanogenic Archaea

The present study investigated the inhibitory effects of saturated fatty acids on methanogenesis in Archaea, and whether or not competitive inactivation of the methanogens’ coenzyme M (HS-CoM) is involved in the inhibition. Strains tested in batch cultures were Methanosarcina barkeri, Methanosarcina mazei, Methanococcus voltae, all incubated at 37°C, and Methanothermobacter thermoautotrophicus,...

متن کامل

Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea.

Phylogenetic and stable-isotope analyses implicated two methanogen-like archaeal groups, ANME-1 and ANME-2, as key participants in the process of anaerobic methane oxidation. Although nothing is known about anaerobic methane oxidation at the molecular level, the evolutionary relationship between methane-oxidizing archaea (MOA) and methanogenic archaea raises the possibility that MOA have co-opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006